

Ex. RM06

Fondations en rocher

Ex. RM06.1

Fondation sur un massif rocheux fortement fissuré (plusieurs familles de discontinuités)

Une campagne d'essais de laboratoire sur des carottes de roche intacte de granite et de siltite (siltstone ≈ grès à grains très fins) ont permis de déterminer les caractéristiques suivantes :

Roche intacte	γ (kN/m ³)	σ _{ci} (MPa)	m _i	c (MPa)	φ (°)	V
Granite	27	150	32	4.5	64	0.25
Siltite	25	65	7	0.45	21	0.25

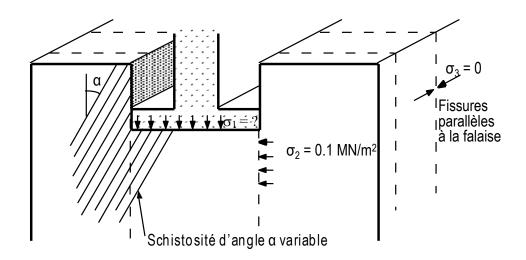
Les massifs rocheux de granite et de siltite (siltstone) sont fortement fissurés (≥ 3 familles de discontinuités) et leur comportement mécanique peut raisonnablement être idéalisé par un milieu isotrope équivalent. Les caractéristiques correspondantes sont données ci-dessous (certaines étant calculées à partir des données relatives à la matrice rocheuse).

Massif rocheux	GSI	RMR	σ _{cm} (MPa)	$\sigma_{tm} (\text{MPa})$	E (MPa)	m_b	S	а
Granite	75	76	37.4	-0.71	44668	13.1	0.062	0.50
Siltite	20	34	0.74	0	3981	0.4	0.00014	0.55

Une charge Q de 2 MN doit être reportée sur chacun de ces massifs rocheux par une fondation superficielle carrée en béton armé (béton C30/37 de caractéristiques E_c = 30'000 MPa et f_{cd} = 20 MPa). On considérera un facteur global de sécurité FS de 3 sur la résistance des massifs rocheux.

- 1. Pour chacun de ces massifs rocheux, calculer la largeur B de la fondation en considérant le critère de rupture généralisé de Hoek-Brown pour le massif.
- 2. Pour la largeur B déterminée en I, estimez le tassement moyen δ de la fondation.
- 3. Pour le massif de siltite, calculer la largeur de la fondation B si son assise se trouve à 2 m de profondeur (et en considérant le critère de rupture généralisé de Hoek-Brown pour le massif).
- 4. Pour le massif de siltite, calculer la largeur de la fondation B en utilisant la solution de Bell.
- 5. Idem qu'au point précédent (IV), mais avec une assise de la fondation à 2 m de profondeur

Ex. RM06.2


Fondation sur un massif rocheux comportant une famille de discontinuités

Sur un éperon de micaschiste présentant une fissuration parallèle à la falaise, on doit fonder une pile de pont. Comme la schistosité de la roche présente une inclinaison α variable selon l'emplacement, on veut déterminer la contrainte limite σ_1 à la base de la fondation, en admettant que la contrainte horizontale σ_3 perpendiculaire à la falaise vaut zéro (présence de fissures ouvertes) et celle parallèle vaut σ_2 = 0.1 MN/m².

Résistance de la roche intacte: σ_{ci} = 12 MN/m²; σ_{ti} = -2 MN/m² (Essai brésilien)

Résistance au cisaillement sur la schistosité: φ = 28°, c = 0.8 MN/m²

1. Vérifier analytiquement la valeur minimale de σ_1 , pour α critique (voir cours matrice rocheuse).

